Distributed Job Scheduling based on Swarm Intelligence: A survey

Scientists and engineers need computational power to satisfy the increasing resource intensive nature of their simulations. For example, running Parameter Sweep Experiments (PSE) involve processing many independent jobs, given by multiple initial configurations (input parameter values) against the same program code. Hence, paradigms like Grid Computing and Cloud Computing are employed for gaining scalability. However, job scheduling in Grid and Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, specially those from Swarm Intelligence (SI), have been proposed. These techniques have the ability of searching for problem solutions in a very efficient way. This paper surveys SI-based job scheduling algorithms for bag-of-tasks applications (such as PSEs) on distributed computing environments, and uniformly compares them based on a derived comparison framework. We also discuss open problems and future research in the area.


About Giorgio Bertini

Research Professor. Founder Director at Learning Change Project - Research on society, culture, art, neuroscience, cognition, critical thinking, intelligence, creativity, autopoiesis, self-organization, rhizomes, complexity, systems, networks, leadership, sustainability, thinkers, futures ++
This entry was posted in Swarm, Swarm intelligence and tagged , . Bookmark the permalink.