Ants, Living Bridges, Collective Computation and Swarm Intelligence

If a gap interrupts a swarm of army ants, they build a ‘living bridge’ using their own bodies. How? New research says ants perform a collective computation.

Complex systems, from ant colonies to stock markets, share a common property: sophisticated group-level structure emerges from simple individual-level behaviors. Using simple interaction rules, Eciton army ants construct complex bridges from their own bodies to span forest-floor gaps. These living bridges are uniquely complex in both their dynamic properties and the number of animals involved and so are of considerable interest for understanding emergent structures in complex systems. In field experiments, we show that construction interacts with traffic rate and environmental geometry, causing bridges to lengthen, widen, and migrate. Bridges provide a shortcut for foraging ants, at the cost of sequestering workers. We show that bridge location represents a cost–benefit trade-off, with potential implications for human engineered self-assembling systems.

These ants are performing a collective computation. At the level of the entire colony, they’re saying they can afford this many ants locked up in this bridge, but no more than that. There’s no single ant overseeing the decision, they’re making that calculation as a colony.


About Giorgio Bertini

Research Professor. Founder Director at Learning Change Project - Research on society, culture, art, neuroscience, cognition, critical thinking, intelligence, creativity, autopoiesis, self-organization, rhizomes, complexity, systems, networks, leadership, sustainability, thinkers, futures ++
This entry was posted in Ants, Collective computation, Collective intelligence, Swarm, Swarm intelligence and tagged , , , , . Bookmark the permalink.